409 research outputs found

    Metallicity in the GRB 100316D/SN 2010bh Host Complex

    Full text link
    The recent long-duration GRB 100316D, associated with supernova SN 2010bh and detected by Swift, is one of the nearest GRB-SNe ever observed (z = 0.059). This provides us with a unique opportunity to study the explosion environment on ~kpc scale in relation to the host galaxy complex. Here we present spatially-resolved spectrophotometry of the host galaxy, focusing on both the explosion site and the brightest star-forming regions. Using these data, we extract the spatial profiles of the relevant emission features (Halpha, Hbeta, [OIII] 5007A, and [NII] 6584A), and use these profiles to examine variations in metallicity and star formation rate as a function of position in the host galaxy. We conclude that GRB 100316D/SN2010bh occurred in a low-metallicity host galaxy, and that the GRB-SN explosion site corresponds to the region with the lowest metallicity and highest star formation rate sampled by our observations.Comment: 7 pages, 3 figures, accepted for publication in The Astrophysical Journa

    Aspherical Supernova Shock Breakout and the Observations of Supernova 2008D

    Get PDF
    Shock breakout is the earliest, readily-observable emission from a core-collapse supernova explosion. Observing supernova shock breakout may yield information about the nature of the supernova shock prior to exiting the progenitor and, in turn, about the core-collapse supernova mechanism itself. X-ray Outburst 080109, later associated with SN 2008D, is a very well-observed example of shock breakout from a core-collapse supernova. Despite excellent observational coverage and detailed modeling, fundamental information about the shock breakout, such as the radius of breakout and driver of the light curve time scale, is still uncertain. The models constructed for explaining the shock breakout emission from SN 2008D all assume spherical symmetry. We present a study of the observational characteristics of {\it aspherical} shock breakout from stripped-envelope core-collapse supernovae. We conduct two-dimensional, jet-driven supernova simulations from stripped-envelope progenitors and calculate the resulting shock breakout X-ray spectra and light curves. The X-ray spectra evolve significantly in time as the shocks expand outward and are not well-fit by single-temperature and radius black bodies. The time scale of the X-ray burst light curve of the shock breakout is related to the shock crossing time of the progenitor, not the much shorter light crossing time that sets the light curve time scale in spherical breakouts. This could explain the long shock breakout light curve time scale observed for XRO 080109/SN 2008D.Comment: 16 pages, 29 figures. Accepted to Ap

    Characteristic velocities of stripped-envelope core-collapse supernova cores

    Full text link
    The velocity of the inner ejecta of stripped-envelope core-collapse supernovae (CC-SNe) is studied by means of an analysis of their nebular spectra. Stripped-envelope CC-SNe are the result of the explosion of bare cores of massive stars (8\geq 8 M_{\odot}), and their late-time spectra are typically dominated by a strong [O {\sc i}] λλ\lambda\lambda6300, 6363 emission line produced by the innermost, slow-moving ejecta which are not visible at earlier times as they are located below the photosphere. A characteristic velocity of the inner ejecta is obtained for a sample of 56 stripped-envelope CC-SNe of different spectral types (IIb, Ib, Ic) using direct measurements of the line width as well as spectral fitting. For most SNe, this value shows a small scatter around 4500 km s1^{-1}. Observations (<100< 100 days) of stripped-envelope CC-SNe have revealed a subclass of very energetic SNe, termed broad-lined SNe (BL-SNe) or hypernovae, which are characterised by broad absorption lines in the early-time spectra, indicative of outer ejecta moving at very high velocity (v0.1cv \geq 0.1 c). SNe identified as BL in the early phase show large variations of core velocities at late phases, with some having much higher and some having similar velocities with respect to regular CC-SNe. This might indicate asphericity of the inner ejecta of BL-SNe, a possibility we investigate using synthetic three-dimensional nebular spectra.Comment: 14 pages, 10 figures, MNRAS accepte

    Double-peaked Oxygen Lines Are not Rare in Nebular Spectra of Core-Collapse Supernovae

    Full text link
    Double-peaked oxygen lines in the nebular spectra of two peculiar Type Ib/c Supernovae (SN Ib/c) have been interpreted as off-axis views of a GRB-jet or unipolar blob ejections. Here we present late-time spectra of 8 SN IIb, Ib and Ic and show that this phenomenon is common and should not be so firmly linked to extraordinary explosion physics. The line profiles are most likely caused by ejecta expanding with a torus- or disk-like geometry. Double-peaked oxygen profiles are not necessarily the indicator of a mis-directed GRB jet.Comment: 5 pages, 3 figures, emulateapj, v2: accepted ApJ Letters versio

    The Calibration of the Swift/UVOT Optical Observations: A Recipe for Photometry

    Get PDF
    Swift/UVOT has the capability to provide critical insight into the physics of the early afterglows of gamma-ray bursts (GRBs). But without precise calibration of the UVOT to standard photometric systems, it is impossible to leverage late- time, ground-based follow-up data to the early-time UVOT observations. In this paper, we present a calibration of the Swift/UVOT photometry to the standard Johnson UBV system for the UVOT UBV filters,and a step-by-step photometry recipe for analyzing these data. We base our analysis on aperture photometry performed on the ground-based and UVOT observations of the local standard stars in the fields of supernovae (SNe) 2005am and 2005cf, and a number of Landolt standard stars.We find that the optimal photometry aperture radius for UVOT data is small (2".5 for unbinned data,3".0 for 2X2 binned data),and show that the coincidence- loss (C-loss) correction is important even for relatively faint magnitudes (mag 16 to 19). Based on a theoretically motivated model,we fit the C-loss correction with two parameters, the photometric zero point (ZP) and the saturation magnitude (m_inf), and derive tight constraints for both parameters [sigma(ZP) = 0.01 mag and sigma(m_inf) = 0.02 mag)].We find that the color term correction is not necessary for the UVOT B and V filters,but is necessary for the U filter for blue objects [(U - V) < 0.4 mag]. We also apply our calibration results to the UVOT observations of GRB 050603. There is a scatter of ~0.04--0.08 mag in our final UVOT photometry, the cause of which is unclear, but may be partly due to the spatial variation in the pixel sensitivity of the UVOT detector.Comment: Accepted for publication in PASP (2006 Jan issue). Significantly improved version with many more standard stars. A high resolution version can be found at http://astron.berkeley.edu/~weidong/uvot_calib.ps.g

    The Lick Observatory Supernova Search

    Full text link
    We report here the current status of the Lick Observatory Supernova Search (LOSS) with the Katman Automatic Imaging Telescope (KAIT). The progress on both the hardware and the software of the system is described, and we present a list of recent discoveries. LOSS is the world' most successful search engine for nearby supernovae.Comment: 4 pages, 1 figure, Submitted to the proceedings of the 10th Annual October Astrophysics Conference in Maryland on Cosmic Explosion

    Strongly Variable z=1.48 FeII and MgII Absorption in the Spectra of z=4.05 GRB 060206

    Full text link
    We report on the discovery of strongly variable FeII and MgII absorption lines seen at z=1.48 in the spectra of the z=4.05 GRB 060206 obtained between 4.13 to 7.63 hours (observer frame) after the burst. In particular, the FeII line equivalent width (EW) decayed rapidly from 1.72+-0.25 AA to 0.28+-0.21 AA, only to increase to 0.96+-0.21 AA in a later date spectrum. The MgII doublet shows even more complicated evolution: the weaker line of the doublet drops from 2.05+-0.25 AA to 0.92+-0.32 AA, but then more than doubles to 2.47+-0.41 AA in later data. The ratio of the EWs for the MgII doublet is also variable, being closer to 1:1 (saturated regime) when the lines are stronger and becoming closer to 2:1 (unsaturated regime) when the lines are weaker, consistent with expectations based on atomic physics. We have investigated and rejected the possibility of any instrumental or atmospheric effects causing the observed strong variations. Our discovery of clearly variable intervening FeII and MgII lines lends very strong support to their scenario, in which the characteristic size of intervening patches of MgII ``clouds'' is comparable to the GRB beam size, i.e, about 10^16 cm. We discuss various implications of this discovery, including the nature of the MgII absorbers, the physics of GRBs, and measurements of chemical abundances from GRB and quasar absorption lines.Comment: 14 pages, 3 figures, 1 table; ApJ Letters, accepte

    Probing the Magnetic Field at Sub-Parsec Radii in the Accretion Disk of NGC 4258

    Full text link
    We present an analysis of polarimetric observations at 22 GHz of the water vapor masers in NGC 4258 obtained with the VLA and the GBT. We do not detect any circular polarization in the spectrum indicative of Zeeman-induced splitting of the maser lines of water, a non-paramagnetic molecule. We have improved the 1-sigma upper limit estimate on the toroidal component of the magnetic field in the circumnuclear disk of NGC 4258 at a radius of 0.2 pc from 300 mG to 90 mG. We have developed a new method for the analysis of spectra with blended features and derive a 1-sigma upper limit of 30 mG on the radial component of the magnetic field at a radius of 0.14 pc. Assuming thermal and magnetic pressure balance, we estimate an upper limit on the mass accretion rate of ~10^(-3.7) M_sun/yr for a total magnetic field of less than 130 mG. We discuss the ramifications of our results on current maser models proposed to explain the observed maser emission structure and the consequences for current accretion theories. We find from our magnetic field limits that the thin-disk model and the jet-disk model are better candidates for accounting for the extremely low-luminosity nature of NGC 4258, than models that include advection-dominated accretion flows.Comment: 20 pages, including 10 figures and 2 tables. Accepted for publication in the Astrophysical Journa

    Multi-color Optical and NIR Light Curves of 64 Stripped-Envelope Core-Collapse Supernovae

    Full text link
    We present a densely-sampled, homogeneous set of light curves of 64 low redshift (z < 0.05) stripped-envelope supernovae (SN of type IIb, Ib, Ic and Ic-bl). These data were obtained between 2001 and 2009 at the Fred L. Whipple Observatory (FLWO) on Mt. Hopkins in Arizona, with the optical FLWO 1.2-m and the near-infrared PAIRITEL 1.3-m telescopes. Our dataset consists of 4543 optical photometric measurements on 61 SN, including a combination of UBVRI, UBVr'i', and u'BVr'i', and 2142 JHKs near-infrared measurements on 25 SN. This sample constitutes the most extensive multi-color data set of stripped-envelope SN to date. Our photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination. This work presents these photometric data, compares them with data in the literature, and estimates basic statistical quantities: date of maximum, color, and photometric properties. We identify promising color trends that may permit the identification of stripped-envelope SN subtypes from their photometry alone. Many of these SN were observed spectroscopically by the CfA SN group, and the spectra are presented in a companion paper (Modjaz et al. 2014). A thorough exploration that combines the CfA photometry and spectroscopy of stripped-envelope core-collapse SN will be presented in a follow-up paper.Comment: 26 pages, 17 figures, 8 tables. Revised version resubmitted to ApJ Supplements after referee report. Additional online material is available through http://cosmo.nyu.edu/SNYU
    corecore